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Abstract Type I (T1) diabetes, also called insulin dependent diabetes mellitus (IDDM), is characterized by little or
no insulin production and hyperglycemia. One of the less well known complications of T1-diabetes is bone loss which
occurs in humans and animal models. This complication is receiving increased attention because T1-diabetics are living
longer due to better therapeutics, and are faced with their existing health concerns being compounded by complications
associated with aging, such as osteoporosis. Both male and female, endochondrial and intra-membranous, and axial and
appendicular bones are susceptible to T1-diabetic bone loss. Exact mechanisms accounting for T1-diabetic bone loss are
not known. Existing data indicate that the bone defect in T1-diabetes is anabolic rather than catabolic, suggesting that
anabolic therapeutics may bemore effective in preventing bone loss. Potential contributors to T1-diabetic suppression of
bone formation are discussed in this review and include: increased marrow adiposity, hyperlipidemia, reduced insulin
signaling, hyperglycemia, inflammation, altered adipokine and endocrine factors, increased cell death, and altered
metabolism. Differences between T1-diabetic- and age-associated bone loss underlie the importance of condition
specific, individualized treatments for osteoporosis. Optimizing therapies that prevent bone loss or restore bone density
will allow T1-diabetic patients to live longer with strong healthy bones. J. Cell. Biochem. 102: 1343–1357, 2007.
� 2007 Wiley-Liss, Inc.
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The skeleton is a dynamic system. Targeted
bone remodeling through the activities of osteo-
blasts (bone forming cells) and osteoclasts (bone
resorbing cells) maintains blood calcium levels
within a critical range while keeping bone
strong at sites where support is needed. This
dynamic process requires intricate regulatory
pathways, which under disease conditions can
be altered and lead to reduced bone density
and increased fracture risk. This review will
focus on the effect of type I (T1) diabetes, a
metabolic disease, on the skeleton and potential

mechanisms accounting for its associated osteo-
porosis. While the T1-diabetic bone phenotype
has similarities with age associated osteo-
porosis, its cause stems from reduced bone
formation rather than increased bone resorp-
tion. This difference marks the importance of
future development and selection of osteo-
porosis treatments that are specific for different
types of bone loss.

DIABETES

Diabetes affects over 20 million people in the
United States, roughly 7 percent of the popula-
tion, and is the result of decreased insulin signal-
ing and the inability of insulin sensitive cells to
take up glucose. Therefore, hyperglycemia (non-
fasting plasma glucose levels greater or equal to
200mg/dl [Kuzuya et al., 2002]) is one criteria
used in the diagnosis of diabetes. Twomain forms
of this metabolic disease exist and their preva-
lence is increasing world wide. T1 diabetes,
also called insulin dependent diabetes mellitus
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(IDDM), is characterized by little or no insulin
production andweight loss and affects more than
800,000 people in the United States. Autoim-
mune, genetic and environmental factors can
contribute to the development of T1-diabetes.
Type II (T2) diabetes, also called non-insulin
dependent diabetes mellitus (NIDDM), is caused
by cells becoming resistant to insulin signaling
and accounts formore than 90% of diabetes in the
UnitedStates.Diet, obesity, and reducedphysical
activity are a fewof the factors that are thought to
contribute to the development of T2-diabetes.
Improved glucose monitoring, insulin delivery
methods, and pharmacologic treatments are
increasing patient lifespan, but increasing the
risk of complications from extended exposure to
diabetic conditions. Well known diabetic compli-
cations include retinopathy, neuropathy, and
nephropathy; however, recently attention has
focused on diabetic bone pathology [Levin et al.,
1976; Auwerx et al., 1988; Buysschaert et al.,
1992; Bouillon et al., 1995; Krakauer et al., 1995;
Munoz-Torres et al., 1996; Tuominen et al., 1999;
Kemink et al., 2000]. T2-diabetic bone pathology
ismarkedby increased fracture riskbut effects on
bone mineral density (BMD) are controversial
[Karsenty, 2006; Rosen and Bouxsein, 2006;
Zhao et al., 2007]. In addition, bone itself may
influence insulin sensitivity and T2-diabetes
onset [Karsenty, 2007]. On the other hand, T1-
diabetes is clearly associated with bone loss
and suppressed bone formation. Thus, the T1-
diabetic bone pathology serves as amore straight
forward system to understand the effect of sup-
pressed insulin signaling, hyperglycemia, and
metabolic abnormalities on the regulation of bone
formation.

T1-DIABETES—HUMAN BONE PATHOLOGY

T1-diabetic bone loss was identified at the
beginning of the 1900’s and nowmore than 50%
of T1-diabetic patients are thought to have bone
loss compared to healthy age matched subjects,
and almost 20% of patients age 20–56 meet the
criteria for being osteoporotic [Munoz-Torres
et al., 1996; Kemink et al., 2000]. Correspond-
ingly, T1-diabetes is a risk factor for fractures
[Bouillon, 1991;Meyer et al., 1993; Forsen et al.,
1999; Schwartz et al., 2001] and delayed
fracture healing [Herskind et al., 1992; Folk
et al., 1999;White et al., 2003]. Bone loss (at the
radius and femur) and hip fracture risk are

evident in both male and female T1-diabetics
[Auwerx et al., 1988; Buysschaert et al., 1992;
Miao et al., 2005; Hadjidakis et al., 2006;
Strotmeyer et al., 2006]. However, the influence
of gender on diabetic vertebral BMD is in-
consistent, with reports indicating suppres-
sion only in males [Hadjidakis et al., 2006;
Strotmeyer et al., 2006] or only in females
[Auwerx et al., 1988]. Oral contraceptive use
inwomenmay offer some protection against T1-
diabetic bone loss [Lunt et al., 1998; Hofbauer
et al., 2007] and may contribute to study
variability. Overall, combined study analyses
calculate that T1-diabetes increases fracture
risk by 1.3–2.3-fold at the lumbar spine, 1.4–
2.6-fold at the femoral neck, and 1.8-fold for the
distal radius [Hofbauer et al., 2007]. Bone loss
can begin at the onset of diabetes in children
[Gunczler et al., 1998; Lopez-Ibarra et al., 2001;
Bechtold et al., 2006], but there are reports of
children with T1-diabetes who do not exhibit
bone loss [Pascual et al., 1998; Valerio et al.,
2002]. A concern is that existing bone loss in T1-
diabetic patients could compound the fracture
risk associated with conditions such as meno-
pause and aging.

Mechanisms contributing to T1-diabetic bone
loss are unknown, but there are many theories
(Fig. 1).Analysis ofT1-diabetic bone remodeling
serum markers suggests that resorption is
unaltered [Bonfanti et al., 1997; Kemink et al.,
2000] or decreased [Cloos et al., 1998; Gunczler
et al., 1998]. Bone formation, on the other hand,
is thought to be decreased as noted by reduced
serum levels of osteocalcin [Bouillon et al., 1995;
Kemink et al., 2000], a marker of osteoblast
maturation and bone remodeling. This suggests
that a decrease in osteoblast number and/
or osteoblast differentiation contributes to the
reduced bone formation.

T1-DIABETES—RODENT MODELS
AND BONE DENSITY

Pharmacologic (i.e., alloxan or streptozotocin,
STZ) and genetically predisposed (i.e., non-obese
diabetic, NOD) rodent models of T1-diabetes
allow further examination of the T1-diabetic
bone phenotype and its mechanisms. Similar to
T1-diabetic patients, T1-diabetic animalmodels
exhibit significant and even more pronounced
bone loss (Fig. 2) [Verhaeghe et al., 1990;
Herrero et al., 1998; Verhaeghe et al., 2000;
Shyng et al., 2001;Botolin et al., 2005;Thrailkill
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et al., 2005] marked by decreased bone volume
and osseointegration in implants and distrac-
tion models [Verhaeghe et al., 1990; Sasaki
et al., 1991; Takeshita et al., 1997; McCracken
et al., 2000; Botolin et al., 2005; Thrailkill
et al., 2005]. Decreased mineral apposition
rate, serum osteocalcin levels, and expression
of osteoblast markers (such as osteocalcin) in
diabetic bones [Goodman and Hori, 1984;
Krakauer et al., 1995; Botolin et al., 2005]
support a mechanism of decreased osteoblast
number and/or maturation in T1-diabetic bone
loss, consistent with human studies. Histo-
morphometry and microcomputed tomography
(mCT) analyses of tibias 4 weeks after the
confirmation of STZ-induced diabetes demon-
strate a significant decrease (>50%) in mouse
tibia, femur, and vertebrae trabecular bone
volume fraction (BVF) [Botolin et al., 2005;
Martin and McCabe, 2007] similar to the bone
pathology seen in diabetic rats [Locatto et al.,
1993;Waud et al., 1994].Bone loss is also seen in
spontaneously diabetic NOD mice, confirming
the STZ model as being useful for studying T1-
diabetic bone Pathology [Botolin and McCabe,
2007b]. T1-diabetes also affects cortical bone
density parameters and causes bone loss in

the intra-membranous formed, unloaded skull
bone [Martin andMcCabe, 2007]. These results
indicate that T1-diabetic bone loss affects all
bones (not just endochondrial or loaded bone)
and affects both trabecular and cortical bone.

T1-DIABETIC BONE LOSS—OSTEOCLAST
ACTIVITY IS NOT INCREASED

Most studies examining osteoclast activity in
T1-diabetic rodent models suggest no change
or a decrease in activity based on histology
(osteoclast number, erosion depth, erosion sur-
face) and secretion in the urine of bone matrix
breakdown products such as deoxypyridinoline
[Locatto et al., 1993; Herrero et al., 1998;
Verhaeghe et al., 2000] (see Fig. 3), consistent
with human studies. Because urine measure-
ments can be confounded by diabetic polyurea
and nephropathy, additional serum measure-
ments are important. In mice, 2 weeks of
confirmed diabetes does not alter urine deoxy-
pyridinoline levels [Botolin et al., 2005], osteo-
clast histological parameters, or TRAP5 and
cathepsin mRNA levels in whole bone [Botolin
et al., 2005; Botolin and McCabe, 2007a].
However, serum PYD and TRAP5b levels are

Fig. 1. Potential contributors to the T1-diabetic bone pheno-
type. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Fig. 2. T1-diabetes causes bone loss and increased marrow
adiposity in mice. T1-diabetic mice exhibit significant bone loss
4 weeks after the confirmation of hyperglycemia (blood glucose
levels greater than 300 mg/dl). Trabecular bone loss is evident in
all bones examined regardless of location or derivation (endo-
chondrial or intra-membranous). Shown is a three-dimensional
computed tomography image of a region of tibial bone just
beneath the growth plate in control and diabetic mice. Histology
in this tibial region demonstrates an increase in marrow adiposity
(white round cells) in diabetic compared to control mice. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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suppressed at 2 and 3 weeks of diabetes
[Halleen et al., 2000, 2002; Botolin et al., 2005;
Botolin and McCabe, 2006b]. These findings
indicate that increased osteoclast activity can-
not account for T1-diabetic bone loss. The lack of
a visible suppression of osteoclast activity in
tibias (while systemic markers of resorption are
decreased) suggests either that osteoclast activ-
ity is unaltered in tibia but is suppressed in
other bones or that suppression of osteoclast
activity is minimal in all bones and only
becomes apparent in systemic measures that
take into account the total skeletal resorptive
activity. Decreases in osteoclast activity could
contribute to decreased osteoblast maturation
through reduced osteoclast production of osteo-
blast enhancing factors [Dai et al., 2004; Phan
et al., 2004; Koh et al., 2005]. Alternatively,
the reduction in osteoclast activity could be
secondary to reduced osteoblastmaturationand
its associated decrease in osteoclast signaling
[Phan et al., 2004]. Still, these findings indicate

that increased osteoclast activity is not a
mediator of bone loss in T1-diabetes and that
suppression of osteoblast activity must account
for the bone loss.

T1-DIABETIC BONE LOSS—OSTEOBLAST
ACTIVITY IS DECREASED

Examination of osteoblast and bone forma-
tion markers (see Fig. 2) in T1-diabetic tibias
indicates a decrease in markers of mature
osteoblasts: osteocalcin mRNA, serum osteo-
calcin levels, and mineral apposition rate
[Verhaeghe et al., 1990; Epstein et al., 1994;
Herrero et al., 1998; Botolin et al., 2005; Botolin
and McCabe, 2007a]. While short and long
termdiabetes consistently result in suppression
of osteocalcin mRNA levels [Botolin et al.,
2005; Botolin and McCabe, 2006b, 2007a],
suppression of runx2 mRNA levels is evident
at early time points but is not always seen in
long term studies [Botolin et al., 2005; Botolin
andMcCabe, 2006b, 2007a]. This could indicate
osteoblast dedifferentiation, transdifferentia-
tion, or death at the onset of diabetes followed by
continued suppression of osteoblast maturation
under chronic conditions. Thus, T1-diabetes
likely influences both osteoblast number and
maturation. Diabetes-associated suppression
of osteoblast maturation is also suggested by:
(1) reduced bone implant/healing of diabetic
rat calvarial defects [Shyng et al., 2001],
(2) decreased bone formation around titanium
or hydroxyapatite bone implants [Takeshita
et al., 1997; Giglio et al., 2000; Siqueira et al.,
2003], and (3) decreased alveolar (jaw) bone
formation [Mishima et al., 2002]. In bone
marrow ablated mice, the ability of T1-diabetic
mice to make bone was decreased (marked by
decreased runx2 and osteocalcin mRNA levels)
compared to controls at 4 and 6 days after
ablation [Lu et al., 2003]. This early suppression
of runx2 and osteocalcin expression is similar to
what is seen in early stages of STZ-induced
diabetic mice.

T1-DIABETIC BONE LOSS—THE ROLE
OF MARROW ADIPOSITY

Bone marrow stromal cells (BMSC) not only
give rise to osteoblasts, but also to adipocytes.
In vitro studies demonstrate that promoting
adipocyte maturation of mesenchymal cells
reduces the number of mature osteoblasts in

Fig. 3. Bone density is determined by the contributions of bone
resorption by osteoclasts and bone formation by osteoblasts.
Osteoclast activity can be assessed by a combination of
approaches including histological measurement of the number
of osteoclasts, the depth of visible resorption pits (erosion depth)
the area of bone that is undergoing resorption (erosion surface);
urine measurements of collagen fragments released from bone
during resorption (i.e., deoxypyridinoline); serum markers
specific for osteoclast activity (active TRAP5b); and mRNA
or protein levels of markers of mature osteoclasts in bone
homogenates. Osteoblast activity (bone formation) can be
assessed through methods that include measuring bone mRNA
levels of markers of osteoblast maturation (such as runx2 (early
stage) and osteocalcin (late stage)); histomorphometric measure-
ments such as osteoblast number and osteoid (unmineralized
predominantly collagen I containing bone matrix) surface and
area; and dynamic bone measurements utilizing two calcein
injections to measure the rate of matrix mineralization (matrix
apposition rate, MAR). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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culture [Diascro et al., 1998; Lecka-Czernik
et al., 2002; Ahdjoudj et al., 2004; McBeath
et al., 2004]. While the regulation of lineage
selection is complex, key aspects of lineage
selection and differentiation are well known
(Fig. 3). For example, factors such as TGFb/
BMPs,TAZ, cytokines/adipokines (suchasTNFa
and leptin), Msx2, thyroid hormone, metabolic
stress, and wnt signaling are thought to contrib-
ute to the regulation of osteoblast versus adipo-
cyte lineage selection [Thomas et al., 1999; Kato
et al., 2002; Little et al., 2002; Cheng et al., 2003;
Bennett et al., 2005; Hong et al., 2005; Kindblom
et al., 2005; Irwin et al., 2007]. A reciprocal
relationship between bone adiposity and BMD
has been recognized with conditions of osteopo-
rosis including: age related and disuse-associ-
ated osteoporosis [Jilka et al., 1996; Kajkenova
et al., 1997; Verma et al., 2002; Moerman et al.,
2004;Nuttall andGimble, 2004], suggesting that
lineage selection could regulate bone density.
When cells commit to the adipocyte lineage,
there is an early elevation in a transcription
factors called CCAAT/enhancer binding protein
(C/EBP)b followed by an increase in peroxisomal
proliferator-activated receptor (PPAR)g2 and
C/EBPa [Rosen and Spiegelman, 2000]. Activa-
tion of PPARg by its binding to fatty acid ligands
and exogenous ligands such as thiazolidine-
diones (including troglitazone and rosiglitazone;
antidiabetic compounds that lower hyperglyce-
mia, hyperinsulinemia, and hypertriglyceride-
mia in T2-diabetics) [Ferre, 2004; Knouff and
Auwerx, 2004] induces adipocyte differentiation
and transcription of genes such as adipose-
specific fatty acid binding protein (aP2; intra-
cellular fatty acid transport protein). PPARg2
over expression or activation can stimulate
marrow adiposity, suppress osteoblast matura-
tion and in some cases cause bone loss [Lecka-
Czernik et al., 1999; Picard and Auwerx, 2002;
Rzoncaetal., 2004;Ali etal., 2005],whereasmice
deficient in PPARg exhibit an increase in BMD
[Akune et al., 2004; Cock et al., 2004].
Similar to age related and disuse bone

pathology, male and female T1-diabetic mouse
tibias, femurs, and even calvaria exhibit
increased bone marrow adiposity, increased
adipocyte markers (such as PPARg2 and aP2
mRNA) and increased numbers of lipid-dense
adipocytes in the bone marrow (Fig. 2) [Botolin
et al., 2005; Martin and McCabe, 2007]. In
contrast, peripheral subcutaneous fat stores are
depleted in T1-diabetic mice. A similar switch

in adiposity from periphery to bone marrow
occurs in spontaneously diabetic mice [Botolin
andMcCabe, 2007b] indicating that this pheno-
menon is specific to the T1-diabetes condition.
This indicates that marrow lipogenesis/
adiposity is regulated differently from subcuta-
neous adipose stores, perhaps as a result of local
differences in the levels of factors such as
cytokines and growth factors.

IS MARROW ADIPOSITY LINKED
TO T1-DIABETIC BONE LOSS?

Selection of adipogenesis over osteoblasto-
genesis is a common theme in bone [Meunier
et al., 1971; Jilka et al., 1996; Kajkenova et al.,
1997; Verma et al., 2002; Gimble et al., 2006]
but there is an increasing number of studies
in which this relationship does not hold [Torn-
vig et al., 2001; Lecka-Czernik et al., 2002;
Lazarenko et al., 2006]. Exactly why marrow
adiposity appears in T1-diabetes is not known,
but if it is linked to bone loss then the regulation
of adiposity is a key therapeutic target [Duque,
2003; Nuttall and Gimble, 2004]. Existing data
cannot distinguish whether lipid sparse adipo-
cytes that were always present in the marrow
are accumulating lipid and becoming visible
or whether mesenchymal pluripotent cells are
becoming adipocytes. The latter could occur
at the expense of osteoblast lineage selection
or occur separate from osteoblast pathway
selection (and not affect bone formation). It is
unknown whether these adipocytes have a
positive, negative or no effect on the bone
[Gimble et al., 2006].

At least two possibilities can explain the
function of PPARg2 elevation in T1-diabetes: it
could function as an inducer of adipogenesis or
it simply represents a marker of maturing
adipocytes. To test the role of PPARg and mar-
row adiposity in T1-diabetic bone loss, PPARg
activity can be inhibited by treatingmice with a
PPARg anagonist, bisphenol-A-diglycidyl ether
(BADGE), which is demonstrated to prevent
adipogenic cells from undergoing hormone-
mediated differentiation [Wright et al., 2000]
and can prevent rosiglitazone signaling in lung
[Cuzzocrea et al., 2004]. While BADGE treat-
ment did not prevent T1-diabetic hyperglyce-
mia it did prevent marrow adiposity [Botolin
and McCabe, 2006b], consistent with a role for
active PPARg in stimulating marrow adiposity
[Picard and Auwerx, 2002; Rzonca et al., 2004;
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Ali et al., 2005]. Despite this effect, BADGE
treatment did not prevent T1-diabetic bone loss
[Botolin and McCabe, 2006b], suggesting that
the appearance of mature marrow adipocytes is
not the cause of suppressed osteoblast matura-
tion and bone formation. This is somewhat
unexpected since congenital PPARg deficiency
results in enhanced BMD [Akune et al., 2004;
Cock et al., 2004]. This difference may stem
from the length of time that PPARg is sup-
pressed; in the BADGE treatment studies
suppression is only for a 40-day period; extend-
ed treatment may be necessary to observe
increases in BMD. Alternatively, the increased
number of lipid dense adipocytes in T1-diabetes
is not the result of changes in lineage selection,
but changes in adipocytes maturation. Alter-
natively, BASGE treatment may leave marrow
cells stuck at an early stage of adipocyte
commitment prior to PPARg activation inwhich
case they cannot switch to the osteoblast
lineage. Similar to the T1-diabetic mouse find-
ings, PPARg haploinsufficiency did not prevent
bone loss in ovariectomized mice [Akune et al.,
2004]. This suggests the possibility that PPARg
and adiposity may not be linked to all forms of
bone loss. It may be that factors affected by
diabetes are primary regulators of osteoblast
differentiation and apoptosis, but also con-
tribute to the regulation of lineage selection
(see Fig. 4). For example, TGFb treatment is
effective at preventing bone loss and marrow
adiposity in hind limb suspended mice [Ahd-
joudj et al., 2002] and can decrease osteoblast
and osteocyte cell death by more than 50%
[Bodine et al., 2005]. Clearly more studies are
needed to sort out the relationship between
adiposity, regulators of adiposity and bone
density.

LOSS OF INSULIN RECEPTOR (IR) SIGNALING
DOES NOT CAUSE BONE LOSS

Two obvious potential contributors to T1-
diabetic bone lossare low insulin levels/signaling
and hyperglycemia. It is known that insulin
treatment can prevent the negative effects of
diabetes [Hough et al., 1981; Verhaeghe et al.,
1992] andevenenhance bone formation [Haffner
and Bauer, 1993; Krakauer et al., 1995]. The
requirement for insulin receptor (IR) in the
metabolic actions of insulin is demonstrated by
null mutation of the IR in mice or humans
causing early postnatal death [Accili et al., 1996;

Nakae et al., 2001]. It is known that osteoblasts
express IR as they differentiate and osteoblasts
respond to insulin treatment [Kream et al.,
1985; Levy et al., 1986], however osteoblasts
are capable of differentiating in standard in vitro
conditions that contain very low insulin levels

Fig. 4. Mechanisms regulating osteoblast number and matura-
tion. Osteoblasts, the cells involved in bone formation, are
derived frommesenchymal stem cells which can also give rise to
adipocytes and a variety of other cell types. As cells commit to
the osteoblast lineage, Runx2 is expressed. Runx2 is a key
transcription factor required for osteoblast lineage selection and
expression of osteoblast specific genes and osteoblast matura-
tion. Subsequent to Runx2 induction, there is a selective
expression of maturation, stage specific genes. Osteocalcin is
expressed inmature osteoblasts and is used as a late stagemarker
of maturation [Lian et al., 1998; Winchester et al., 2000; Sasano
et al., 2002]. During mineralization osteoblasts can either
apoptose or become embedded in bone in which case they are
called osteocytes. Apoptosis is another potential mechanism
regulating the number of bone cells and perhaps bone formation.
As mesenchymal cells commit to the adipocyte lineage PPARg2
is expressed followed by other genes including aP2 (a fatty acid
bindingprotein). The regulationof lineage selection is affectedby
a variety of factors (denoted ‘‘X’’ in the figure), including TGF-b,
Wnts, TAZ, and BMPs. Many of these factors also contribute to
the regulation of osteoblast maturation and osteoblast and
osteocyte viability. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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(�1 pM). Distinguishing the roles of insulin,
hyperglycemia, and other factors in T1-diabetic
bone loss is complex because modulation of
one parameter will necessarily affect the other.
Recently a mouse model was developed (the
genetically reconstituted IR knockout mice
(IRKO-L1) that are euglycemic as a result of
human IR transgene expression in the pancreas,
liver, and brain, but not in bone) which allows
examination of the role of reduced insulin
signaling in bone. Surprisingly, IRKO-L1 bones
develop normally and exhibit similar (and
trend toward greater) bone density compared
to wild-type littermates [Irwin et al., 2006].
While osteoblast and osteoclast markers are
similar in wild-type and IRKO-L1 bones, adipo-
cyte markers and marrow adiposity are greatly
decreased in IRKO-L1 bones consistent with IR
inactivation impairing adipocyte differentiation
[Accili and Taylor, 1991; Cinti et al., 1998;
Entingh-Pearsall and Kahn, 2004] (although
peripheral body fat content in IRKO-L1 mice
was not reduced). Isolated BMSC from IRKO-L1
mice do not exhibit reduced adipogenic poten-
tials in vitro suggesting that local or systemic
factors secreted by other cell types likely play
a role in the bone adiposity differences. One
interesting finding was that IRKO-L1 bones
exhibit upregulation of IGF-1 receptor expres-
sion; thismaybeanadaptive response since both
IGF-1 and IRs signal through similar pathways
involving Akt [Irwin et al., 2006] and IRKO-L1
mice have elevated insulin levels to increase
IGF-1 signaling. A similar upregulation in IGF-1
receptor expression is seen in IRKO-L1 muscle
[Shefi-Friedman et al., 2001]. The compensatory
signaling of insulin and IGF-1 pathways also
occurs in reverse as evidenced by the rescue
of differentiation and mineralization of IGF-1
receptor deficient osteoblasts by insulin treat-
ment [Fulzele et al., 2007]. Thus, sufficient
signaling through either IR or IGF-1 is required
for optimal bone mineralization.

IS HYPERLIPIDEMIA LINKED
TO T1-DIABETIC BONE LOSS?

T1-diabetes is a metabolic disease where the
lack of insulin results in decreased glucose
utilization by insulin sensitive cells. As a
consequence, cells require other energy sources.
Mobilization of free fatty acids and triglycerides
are able to provide needed cellular energy.
In well controlled T1-diabetic patients dysli-

pidemia is found in about 20 and 50% of
adolescent and adults, respectively, and is
consistent with the general population [Cullen
et al., 1999; Ford et al., 2003; Imperatore et al.,
2004; Wadwa et al., 2005; Faulkner et al., 2006;
Maahs et al., 2007]. With reduced metabolic
control, T1-diabetic patients have an increased
risk and severity of hyperlipidemia [Weidman
et al., 1982; Winocour et al., 1986; Chaturvedi
et al., 2001] which is linked to diabetic compli-
cations such as nephropathy and retinopathy
[Cullen et al., 1999; Hadjadj et al., 2004].
Hyperlipidemia has also been reported in T1-
diabetic BALB/c mice [Botolin and McCabe,
2006b], C57BL/6Jmice [Pighin et al., 2005], and
rats [Zhang et al., 2002b]. Marrow cells isolated
from mice fed high fat diets fail to undergo
osteoblast differentiation in vitro [Parhami
et al., 1999], suggesting a key role for serum
lipids in the activation of PPARg2 and bone
marrow cell lineage selection. However, in past
studies where PPARg activity was inhibited
by BADGE treatment, hyperlipidemia was
prevented in STZ-diabetic mice, but the mice
still lost bone [Botolin andMcCabe, 2006b]. This
indicates that fat metabolism and adiposity are
not actively linked to the bone loss seen in T1-
diabetes. In addition to altering total lipid
levels, T1-diabetes can causes changes in lipid
profiles and increase the proportion of serum
18:1n-9 (oleic) and 18:2n-6 (linoleic acid)
lipids relative to other lipids [Christeff et al.,
1994]. These changes can increase the concen-
tration of ligands for PPARg [Christeff et al.,
1994; Forman et al., 1995; Lecka-Czernik
et al., 2002; Ferre, 2004; Knouff and Auwerx,
2004] and result in PPARg2 activation and
increase marrow adiposity. Certainly, treat-
ment of osteoblast-like cells with serum that
contains high levels of palmitic, oleic, and
linoleic fatty acids, can activate PPARs and
induce adipocyte-like differentiation [Diascro
et al., 1998; Lecka-Czernik et al., 2002]. Thus,
one could hypothesize that dyslipidemia asso-
ciated with diabetes can compound and further
bone loss by PPARg activation and/or influenc-
ing osteoblasts directly. Further studies are
needed to fully understand the role of lipids in
diabetic bone loss.

ROLE OF HYPERGLYCEMIA

As noted previously, insulin treatment can
prevent the negative effects of diabetes, but is
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associatedwith restoration of euglycemiawhich
in itself could be important for avoiding compli-
cations [Brownlee et al., 1984]. Reports in bone
and other tissues indicate that hyperglycemia
contributes to diabetic complications through a
variety of mechanisms including increasing
reactive oxygen species (ROS) [Wolff and
Dean, 1987; Hunt et al., 1990], polyol-pathway
activity [Gabbay, 1973; Inaba et al., 1997],
protein kinase C activity [Wolf et al., 1991;
Ceolotto et al., 1999], and non-enzymatic glyco-
sylation of key proteins such as collagen I or
IGF-1 [Brownlee et al., 1984;Bucala et al., 1984;
Locatto et al., 1993; Katayama et al., 1996;
McCarthy et al., 1997;McCarthy et al., 2001]. In
addition, hyperglycemia can induce an osmotic
response in cells such as osteoblasts that
express low Km glucose transporters, GLUT1
and GLUT 3 [Thomas et al., 1996] since glucose
transport is maximal at a euglycemic state
(glucose concentration of 3–5.5 mM). During
osmoadaptation to extracellular hyperosmotic
conditions, short-term signaling pathways (ion
transporters) are activated to allow cells to
undergo a volume change and shrink while
long-term metabolic pathways work to draw
water back into the cell to restore cell volume
and intra-cellular solute concentration. Acute
(24 h) hyperglycemia and its associated hyper-
osmolality, at levels seen in diabetic mice
[Botolin et al., 2005], can modulate osteoblast
signaling pathways and suppress expression of
genes associated with osteoblast maturation
including osteocalcin [Zayzafoon et al., 2000,
2002], similar to what is seen in T1-diabetic
mice [Botolin et al., 2005; Botolin and McCabe,
2006b, 2007b]. Chronic hyperglycemic condi-
tions (days to weeks) can also suppress osteo-
calcin expression [Botolin and McCabe, 2006a]
and calcium uptake in osteoblast cultures
[Balint et al., 2001], but this effect is independ-
ent of hyperosmolarity. This indicates different,
time dependent osteoblast responses to hyper-
glycemia. Chronic hyperglycemia in vitro also
raises PPARg2 expression while suppressing
MMP-13 expression, the latter appears to be in
response to hyperosmotic conditions [Botolin
and McCabe, 2006a]. These changes further
suggest that hyperglycemia suppresses osteo-
blast differentiation and may promote an
adipocyte-like phenotype, which could contrib-
ute to chronic T1-diabetic bone loss. Potential
mechanisms include chronic dysregulation of
redox state, activation of the polyol pathway, or

utilization of glucosemetabolismperhaps at the
cost of utilizing other fuels. Increased glucose
metabolism could lead to altered energy status
and increased lactic acid synthesis. Osteoblasts
express acid-sensitive channels [Jahr et al.,
2005] and can respond to low pH conditions by
decreasing mineralization and gene expression
[Brandao-Burch et al., 2005]. While the profiles
of acid-induced gene expression changes do not
completely parallel those seen under hyper-
glycemic conditions, lower extracellular pH
may contribute to some of the changes.

Chronic elevation of extracellular glucose
levels can also lead to glycosylation of proteins
and other cell components (includingDNA) by a
non-enzymatic process, the products are called
advanced glycation end products (AGE). The
role of receptor for AGE products (RAGE) has
been implicated in diabetic bone loss [Lalla
et al., 2000] although its activation results in
increased osteoclast formation [Ding et al.,
2006]whichdoesnot occur early indevelopment
of T1-diabetes, but could be a factor at later
stages. Addition of advanced glycosylation end-
products to culture medium attenuates osteo-
blast differentiation [Kume et al., 2005] and
osteoblasts cultured on AGE-collagen exhibit
decreased maturation and nodule development
[Katayama et al., 1996; McCarthy et al., 2001],
suggesting a potential role for AGE in chronic
hyperglycemia induced bone loss.

ROLE OF ADIPOKINES, CYTOKINES, AND
OTHER ENDOCRINE FACTORS

This review would not be complete with out
discussion of the contribution of other endocrine
factors, adipokines, and cytokines to T1-
diabetic bone loss. T1-diabetic patients and
animal models can exhibit dysregulation of a
variety of endocrine factors including reduced
IGF-1 [Jehle et al., 1998; Clark, 2004] and
amylin [Horcajada-Molteni et al., 2001]. It is
well known that IGF-1 signaling is positively
correlated with BMDand its role in T1-diabetes
and bone loss has been reviewed [Rosen, 2004;
Niu and Rosen, 2005]. Thus, low serum IGF-1
could contribute to reduced BMD, osteoblast
differentiation, and increasedmarrowadiposity
[Zhang et al., 2002a; Rosen et al., 2004]. In fact,
restoration of IGF-1 serum levels in diabetic
rats can, in part, correct decreases in bone
formation [Verhaeghe et al., 1992]. Amylin is
another hormone secreted from pancreatic beta
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cells that can be decreased in T1-diabetes.
Treatment with an amylin agonist improves
bone indices in STZ-induced diabetic rats
[Horcajada-Molteni et al., 2001]. The above
treatments work by restoring critical endocrine
effects and/or by enhancing anabolic activity in
bone, andunderlie howanabolic approaches can
be of benefit to T1-diabetic patients. In addition,
dysregulation (increase, decrease, or no change)
of adipokines such as leptin, ghrelin, and
adiponectin have been reported in T1-diabetic
humans [Hanaki et al., 1999; Luna et al., 1999;
Alexopoulou et al., 2006; Karaguzel et al.,
2006; Martos-Moreno et al., 2006] and mouse
models. For example, serum leptin levels are
suppressed in both male and female diabetic
mice compared to age matched controls, con-
sistent with reduced peripheral fat depots
[Martin and McCabe, 2007]. While not as
effective in leptin-replete mice, leptin treat-
ment can be an effective therapeutic to increase
bone density in leptin-deficient mice [Hamrick
et al., 2005] and in hind limb suspended mice
[Martin et al., 2005]. Given the bone regulatory
capabilities of adipokines, perhaps restoration
of adipokines (like leptin) to normal levels could
reduce T1-diabetic bone loss; future studies will
determine this. Inflammation may be another
contributor to bone loss, since T1-diabetes is the
result of inflammatoryautoimmunedestruction
of the pancreas and therefore cytokine profiles
and cytokine signaling pathways are likely
to be altered during acute and chronic stages
of T1-diabetes. Many T1-diabetic complications
have been shown to have an inflammatory
component. For example, studies in T1-diabetic
patients and rodent models with retinopathy
indicate that levels of cytokines such as IL-1 are
increased in the vitreous fluid [Carmo et al.,
1999; Yuuki et al., 2001]. While elevation of
cytokine levels can activate osteoclast bone
resorption (not a big factor in diabetic bone
loss), they can also suppress osteoblast dif-
ferentiation and bone formation and could
contribute to bone loss in T1-diabetics. Future
understanding of osteo-immune signaling and
regulatory pathways affected by T1-diabetes
will also contribute to the development of
optimal therapeutics for bone loss.

IN SUMMARY

T1-diabetic bone loss doesnot exhibit preference
with regard to bone location or type, mechanical

loading, orgender.Associated increases inmarrow
adiposity may be secondary to bone loss based on
findings that suppression of adiposity does not
prevent bone loss and thatmarrowadiposity is not
present in vertebrae. Many of the factors involved
in suppressing adipogenesis (such as TGFb and
Wnts) are also involved in promoting osteogenesis
and protecting osteoblasts and osteocytes from
apoptosis. Therefore, if these signaling path-
ways are modulated in T1-diabetes, prevention of
adiposity alonewouldnot be sufficient to overcome
defects in the regulation of the other pathways
(osteoblast maturation and viability). Certainly
more studies are needed to examine these signal-
ing defects. Decreased insulin signaling, increased
PPARg activity and hyperlipidemia do not alone
account for T1-diabetic bone loss. Because the
T1-diabeticbonedefect ispredominantly theresult
of a decrease in bone formation (rather than
increased resorption) anabolic therapieswill likely
be the most effective treatment. Future studies
directed at understanding the mechanism of T1-
diabetic bone loss, possibly focusing on alterations
in metabolism, cytokines, adipokines, hormones,
and growth factors, will contribute to the develop-
ment of novel therapeutics that allow T1-diabetic
patients to live longer with healthier bones.
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